Cleveland State University Department of Electrical and Computer Engineering Spring 2007

EEC 471 Power Electronics and Machines Laboratory

<u>Catalog Description</u>: EEC 471 (2-0-2). Prerequisite: EEC 470. Steady state performance of electric machines: dc, induction, and synchronous in combination with power electronics converters.

<u>Textbook:</u>	Electric Machinery Fundamentals,	
	Stephen Chapman, McGraw-Hill, 4rd ed., 2004.	
	N. Mohan, T. M. Undeland and W. P. Robbins, <i>Power Electronics: Converters, Applications and Design</i> , Second Edition, McGraw-Hill, 1995	
Laboratory Manual	Lab Volt Manual	
<u>Coordinator</u>	Dr. A. V. Stankovic, Associate Professor Office Hours: Wednesday 12-1 p.m	
Course Objectives:	To give a student "hands on experience" with equipment and instrumentation used in the electric machines and power electronics laboratory. To give a student opportunity to compare theoretical results with those attainable in practice.	
Expected Outcomes:	Upon completion of this course students should be able to:	

1. Work on industrial projects related to power electronics and electric machines and drives.

Fulfills The Following Electrical Engineering Program Objectives and Outcomes:

Objectives:

- 1) practice electrical engineering in power electronics.
- 2) define and diagnose problems, and provide and implement electrical engineering solutions in industry, business, and government.

Outcomes:

- (a) ability to apply knowledge of mathematics, science, and engineering to power electronics.
- (b) ability to design and conduct electrical engineering experiments, as well as to analyze and interpret data.
- (c) ability to design a system, component or process.
- (d) ability to identify, formulate, and solve electrical engineering problems.
- (e)ability to communicate effectively.

(f) ability to use the techniques, skills, and modern engineering tools necessary for electrical engineering practice.

Contribution of Course to Meeting the Professional Component:

Math & Basic Science: 0 credits; Engineering Topics: 4credits; General Education: 0 credits

Prerequisite by Topic:

- 1 Polyphase systems.
- 2. Magnetic circuit concepts.
- 3. Principles of electromechanical energy conversion.
- 4. Transformers.
- 5. Steady-State performance of AC Machines.

- 6. Steady-State Performance of DC Machines.
- 7. AC/DC Converters.
- 8. DC/DC Converters
- 9. DC/AC Converters.

Experiments:

1. Transformers	3
2. AC/DC Converters – Diode Bridge Rectifiers	3
3. AC/DC Converters – Thyristor Bridge Rectifiers	3
4. DC/AC Converters	3
5 DC/DC Converters-Buck	3
6 DC/DC Converters-Boost &Buck-Boost	3
7. Midterm Bench Exam	3
8. Introduction to DSPACE	3
Mechanical System Modeling	3
9. DC Machine - DSPACE	3
10. Synchronous Motors	3
11. Synchronous Generators	3
13. Induction Machine	3
14. Induction Motor-V/F Control - DSPACE	
15. Bench Exam	3
	45

Laboratory Projects:	One project per experiment.
Computer Usage:	Software-Matlab and Pspice
<u>Grading</u> :	Midterm-30%, Final-40%
	Laboratory Reports – 20%
	Quizzes – 10%
Prepared by:	Dr. A. V. Stankovic Date: 01 15 07