CIS 632 / EEC 687 **Mobile Computing**

TCP in Mobile Networks

Prof. Chansu Yu

Contents

- Physical layer issues
 - Communication frequency
 - Signal propagation
 - > Modulation and Demodulation
- Channel access issues
 - Multiple access / Random access / Asynchronous
 - 802.11 / Bluetooth
 - Capacity / Energy / Fairness / Directional
- System issues
 - > Embedded processor
 - Low power design
- Network issues
 - Location management
 - ➤ Mobile IP / Cellular IP
 - > MANET routing / Clustering Multicast Lilley

 - Interoperability
 - Network reliability (TCP)
 - Quality of service (QoS)

TCP in Mobile IP Networks

TCP in Mobile Ad Hoc Networks

Wireless Mobile Transport Layer

- ☐ Wireless environments are characterized by *long latencies* and *frequent interruptions*
- □ <u>Problem</u>: TCP has been optimized for wired networks
 - <u>Wired Network</u>: When a packet is lost, it's typically a sign of congestion → sender should slow down
 - Wireless Network: When a packet gets lost, it could be due to
 - Disconnects
 - Long latencies slower transmission rates
 - IP tunneling while node moves to new link
 - → What can be done? By whom?

3

TCP Issues

- ☐ Reducing the transmission rate is often the wrong response over wireless links.
- ☐ The sender should know the network it is transmitting over to make the right decision
- ☐ TCP issues in Mobile IP networks
 - > Handoff problem
 - > High transmission error rate

Ramon Caceres, AT&T Bell Lab. Liviu Iftode, Princeton Univ. IEEE Journal on Selected Areas in Communication, 1995 (cited ~425).

Hand-off Problem

☐ Hand-offs occur when a mobile host starts communicating with a new base station (in cellular wireless systems)

5

Hand-off Problem

- ☐ Hand-offs may result in temporary loss of route to MH
 - ➤ with non-overlapping cells, it may take a while before the mobile host receives a beacon from the new BS
- ☐ While routes are being reestablished during handoff,
 - ➤ MH and old BS may attempt to send packets to each other, resulting in loss of packets

Hand-off Problem

- □ Packet loss is mistaken as congestion
 - > Drops the transmission window size
 - ➤ Slow start to restrict the windows growth rate
 - ➤ Resets the retransmission timer to a backoff interval
 - ➤ Thus, reduces the TCP throughput

7

Hand-off Problem

- ☐ During the long delay for a handoff to complete, a whole window worth of data may be lost
 - ➤ After handoff is complete, acks are not received by the TCP sender
 - > Sender eventually times out, and retransmits
 - ➤ If handoff still not complete, another timeout will occur
- ☐ Performance penalty
 - ➤ Time wasted until timeout occurs
 - Window shrunk after timeout

Approaches

- ☐ TCP issues in Mobile IP networks
 - > Handoff problem Fast retransmission
 - ➤ High transmission error rate **Split connection**
- ☐ TCP issues in MANET (not today)
 - > Impact of multiple-hop route
 - ➤ Interplay with 802.11 MAC

17

Handoff Problem - Fast Retransmission

- ☐ When the packet loss is due to handoff, *who* can make the right decision? And *which action* can be taken?
- ☐ When MH is the TCP receiver: after handoff is complete, it sends 3 dupacks to the sender
 - > this triggers fast retransmit at the sender
 - instead of dupacks, a special notification could also be sent
- ☐ When MH is the TCP sender: invoke fast retransmit after completion of handoff

Fast retransmission after a handoff with a 0-second rendezvous delay

19

1-second Rendezvous Delay Improvement using Fast Retransmit

Handoff latency and related packet losses with a 1-second rendezvous delay

- No change in the first two cases as expected
- ☐ Improvement for nonoverlapping cells
 - Some degradation still remains
 - fast retransmit reduces congestion window
- ☐ Do we need to change TCP software?

21

Approaches

- ☐ TCP issues in Mobile IP networks
 - ➤ Handoff problem <u>Fast retransmission</u>
 - ➤ High transmission error rate Split connection
- ☐ TCP issues in MANET
 - ➤ Impact of multiple-hop route
 - ➤ Interplay with 802.11 MAC

High Transmission Error Rate - Split Connection Approach

- ☐ Ho can we address the problem of <u>high error rate over</u> wireless links?
- □ End-to-end TCP connection is broken into one connection on the wired part of the route and one over wireless part of the route
- ☐ A single TCP connection split into two TCP connections
 - > FH-MH = FH-BS + BS-MH
 > "Acks" are intercepted and managed at BS
 FH BS MH

Fixed Host Base Station Mobile Host

Split Connection Approach

- □ BS terminates the standard TCP connection acting as a proxy
- ☐ Old BS (FA) must migrate buffered packets (already acknowledged to FH) as well as socket of the proxy to new BS
- ☐ The socket contains the current state of the TCP connection
 - > Sequence number, addresses, port number
 - Last packet transmitted to MH
 - Last packet acknowledged by MH
 - Next expected acknowledgement and expected number of duplicated acknowledgements
 - > Round-trip time estimate of wireless link

27

Split Connection Approach: Variations

- ☐ Indirect TCP
 - > FH BS connection : Standard TCP
 - ➤ BS MH connection : Standard TCP
- ☐ Selective Repeat Protocol (SRP)
 - > FH BS connection : standard TCP
 - > BS MH connection : selective repeat protocol on top of UDP
- Asymmetric transport protocol (Mobile-TCP)
 - Low overhead protocol at wireless hosts such as header compression, simpler flow control, No congestion control
- ☐ Mobile-End Transport Protocol
 - BS-MH link can use any arbitrary protocol optimized for wireless link

Split Connection Approach : Advantages

- □ BS-MH connection can be optimized independent of FH-BS connection
 - ➤ Different flow / error control on the two connections
- ☐ Local recovery of errors
 - > Faster recovery due to relatively shorter RTT on wireless link
- ☐ Good performance achievable using **appropriate** BS-MH protocol
 - > Standard TCP on BS-MH performs poorly when multiple packet losses occur per window (timeouts can occur on the BS-MH connection, stalling during the timeout interval)
 - > Selective acks improve performance for such cases

Split Connection Approach : Disadvantages

- □ BS retains hard state
 - > BS failure can result in loss of data (unreliability)
 - If BS fails, packet 40 will be lost
 - Since it is ack'd to sender, the sender does not buffer 40
 - Hand-off latency increases due to state transfer
 - Data that has been ack'd to sender, must be moved to new base station
- ☐ Buffer space needed at BS for each TCP connection
 - > BS buffers tend to get full, when wireless link slower (one window worth of data on wired connection could be stored at the base station, for each split connection)
- ☐ Extra copying of data at BS
 - copying from FH-BS socket buffer to BS-MH socket buffer (at TCP layer)
 - increases end-to-end latency

31

Snoop Protocol: TCP-Aware Link Layer Tries to restore the end-to-end semantics of TCP: Foreign agent is not allowed to send acknowledgements correspondent Instead, it just snoops on packets and tries to help alonghost Internet Internet end-to-end TCP3 connection

