
Unification of Replication and Transaction Processing
in Three-Tier Architectures

W. Zhao, L. E. Moser and P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

wenbing@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Abstract

In this paper we describe a software infrastructure that
unifies replication and transaction processing in three-tier
architectures and, thus, provides high availability and fault
tolerance for enterprise applications. The infrastructure is
based on the Fault Tolerant CORBA and CORBA Object
Transaction Service standards, and works with commercial-
off-the-shelf application servers and database systems.

The infrastructure replicates the application servers to
protect the business logic processing. In addition, it repli-
cates the transaction coordinator, which renders the two-
phase commit protocol non-blocking and, thus, avoids po-
tentially long service disruptions caused by coordinator
failure. The infrastructure handles the interactions between
the application servers and the database servers through
replicated gateways that prevent duplicate requests from
reaching the database servers. The infrastructure imple-
ments client-side automatic failover mechanisms, which
guarantees that clients know the outcome of the requests
that they have made. The infrastructure starts the transac-
tions at the application servers, and retries aborted trans-
actions, caused by process or communication failures, au-
tomatically on the behalf of the clients.

1 Introduction

Many enterprise applications use the Common Ob-
ject Request Broker Architecture (CORBA) as the mid-
dleware bus. Recently, the Object Management Group
(OMG) adopted two specifications related to fault tolerance,
namely, the Fault Tolerant CORBA (FT CORBA) [13] and
the CORBA Object Transaction Service (OTS) [14]. The
OTS provides reliability for enterprise applications by pro-
viding commits and aborts to protect the consistency of the
data even in the presence of faults and, thus ensures that
aborted transactions can be retried after a fault. FT CORBA
provides increased reliability for enterprise applications by

replicating CORBA objects so that, if one of the replicas of
an object fails, the surviving replicas can continue the pro-
cessing of the business logic and can provide continuous
service to the clients.

The design of enterprise applications is often based
on a logical decomposition into presentation, logic and
data, which is readily implemented as a three-tier architec-
ture consisting of clients, application servers and database
servers. The front-end provides an easy-to-use interface for
the clients, the application servers implement the business
logic, and the database servers manage data and transac-
tional operations at the back-end. Within this structure, the
application servers use a transaction processing program-
ming model. When an application server receives a client’s
request, it initiates one or more transactions. When the ap-
plication server finishes processing the request, it commits
the transaction, stores the resulting state at the back-end
database, and returns the results to the client.

Transaction processing provides reliability for traditional
enterprise applications, but lacks the high reliability that
many current and future enterprise applications will re-
quire. In the highly distributed and networked environment
of such enterprise applications, faults in a transaction pro-
cessing system can lead to problems. When a transaction
coordinator fails, the distributed transaction commit pro-
tocol requires the participants to wait for the coordinator
to recover, which might be quite a long time. Continued
processing, without waiting for the coordinator to recover,
can compromise the consistency of the data. Consequently,
enterprises are seldom willing to participate in transactions
across a communication network with another enterprise.

The “transaction outcome determination” problem can
arise if the client does not participate directly in the dis-
tributed transaction, which is usually the case for clients in-
teracting across the Internet, including both Web browsers
and computer systems of other enterprises. A fault might
occur in the middle of a transaction, in which case the trans-
action will be rolled back, or a fault might occur after the
transaction has completed and its results are committed but



before the reply is sent back to the client. In both cases,
the client receives no reply, and the client does not know
whether the request has been serviced completely, or not at
all. It is not safe for the client to retry the same request
because the request might then be processed twice.

Stronger fault tolerance for enterprise applications can
be achieved through the unification of replication and trans-
action processing. However, existing replication frame-
works lack the mechanisms that are needed to support three-
tier transaction processing systems [7]. In this paper, we
present an infrastructure that unifies replication and transac-
tion processing within a three-tier architecture. The infras-
tructure uses the replication and recovery provided by FT
CORBA to protect the processing of the business logic, and
the transaction processing provided by the CORBA OTS to
protect the data.

2 Background

2.1 FT CORBA

FT CORBA [13] defines interfaces, policies and services
that provide robust support for applications requiring high
availability and reliability through CORBA object replica-
tion. FT CORBA handles object, process and host crash
faults, but not Byzantine or network partitioning faults. In
FT CORBA, replicated objects are managed through the ob-
ject group abstraction. FT CORBA uses an Interoperable
Object Group Reference (IOGR) to access an object group.
An IOGR contains multiple profiles, each corresponding to
a member (replica) in the group, or to a set of gateways
providing access to the group. The IOGR enables transpar-
ent client reinvocation and redirection to provide unrepli-
cated clients with replication and failure transparency. The
FT CORBA standard addresses the three aspects of fault
tolerance: replication management, fault management and
recovery management. To maintain strong replica consis-
tency, FT CORBA requires that all CORBA objects that are
replicated must be deterministic (or rendered deterministic),
i.e., for the same input (request), all replicas of an object
must produce the same output (reply).

2.2 CORBA OTS

The CORBA Object Transaction Service (OTS) [14] pro-
vides services and interfaces for atomic execution of trans-
actions that span one or more objects in a distributed en-
vironment. A transaction is composed of a set of activities,
defined in terms of CORBA remote method invocations and
communication with a database server. For each distributed
transaction, the OTS generates a unique transaction identi-
fier, which we refer to subsequently as XID. OTS uses the

two-phase commit (2PC) protocol to commit a distributed
transaction.

OTS supports a flexible programming model for transac-
tion context management and propagation. All user mes-
sages in the scope of a transaction contain a transaction
identifier within a transaction context. The transaction con-
text can be managed either directly, by manipulating the
Control Object and the other OTS service objects as-
sociated with the transaction, or indirectly, by using the
Current object provided by the OTS. The Current ob-
ject hides the interactions with the OTS service objects, and
provides a convenient interface for programmers of the OTS
to start, suspend, resume and commit a transaction. The
transaction context is associated implicitly with the request
messages sent by a client involved in a transaction, and is
propagated with those messages to remote objects, without
the client’s direct intervention. The transaction context can
also be propagated explicitly to remote objects in the form
of parameters of the request. Indirect context management,
and implicit propagation, are often referred to as the implicit
programming model for transaction processing in OTS. Our
intention is to support multi-tier applications that use the
implicit programming model and to use flat transactions that
involve one or more database servers as a back-end through
the XA interface [18].

3 Replication and Transaction Processing

The unified infrastructure adopts a non-intrusive inte-
grated approach for fault tolerance to application servers
[19]. It uses Totem [9] to provide reliable totally-ordered
multicasts. The infrastructure implements all of the mech-
anisms specified in FT CORBA, including the server-side
and client-side fault tolerance mechanisms, and the gate-
way mechanisms that facilitate communication between the
unreplicated and replicated CORBA objects. Many mecha-
nisms that FT CORBA defines are complimentary to trans-
action processing. In particular, the problem of transac-
tion outcome determination is solved by FT CORBA’s client
redirection and transparent reinvocation mechanisms.

In addition, the infrastructure augments the existing
replication mechanisms, and introduces novel mechanisms
to cope with the interactions between replicated transac-
tional objects, and those between replicated transactional
objects and the database servers that are outside the fault
tolerance domain:

� Replication mechanisms. In addition to the typical du-
plicate detection, suppression and operation schedul-
ing, the replication mechanisms must also detect the
creation and completion of a transaction, and the
association of each user message with the ongoing
transactions. This provides a basic service for other
transaction-related mechanisms listed below.



� Logging and checkpointing mechanisms. The logging
and checkpointing in FT CORBA is rather general.
The basic idea is that the state of the application ob-
ject is checkpointed at some appropriate time, and all
subsequent requests and replies are logged. When a
new replica is added into the object, the replica can
catch up with other existing replicas by applying the
checkpoint and replaying the logged messages. When
a backup is promoted to be the primary, the logging
mechanisms ensure that the new primary continues
to provide service to the clients. In non-intrusive FT
CORBA implementations, such as Eternal, the check-
point is carried out when an application object is op-
erational quiescent, i.e., the object is not involved with
any ongoing request. This strategy works fine if all re-
mote invocations on the object are independent. How-
ever, in transaction processing, there are many remote
invocations on many objects of a distributed transac-
tion. The use of an operational quiescence point to per-
form a checkpoint is not sufficient, because of the need
to retrieve and subsequently assign potentially large
amount of transaction-related state. The checkpoint-
ing of the state of a transactional object must be done
when the object is transactional quiescent to avoid ac-
cessing and manipulating the transaction-related state.
Transactional quiescence requires that an application
object is operational quiescent, and also that it is not
involved in an ongoing transaction. Such knowledge is
provided by the augmented replication mechanisms.

� Recovery mechanisms. The mechanisms specified by
FT CORBA must be augmented to handle the transac-
tional objects.

� 2PC optimization. Novel mechanisms speed the exe-
cution of 2PC by exploiting the reliable totally-ordered
broadcast capability of Totem.

� Gateway mechanisms. The gateway mechanisms
defined in FT CORBA allow unreplicated CORBA
clients to access replicated CORBA servers inside the
fault tolerance domain. Those mechanisms are not
sufficient for replicated transactional objects. Another
type of gateway, which we refer to as out-bound gate-
ways, are necessary to provide a single-copy image
of the replicated transactional objects to the database
servers. Otherwise, the exactly-once semantics of re-
mote invocations cannot be guaranteed.

� Automatic transaction retry mechanisms. A distributed
transaction can be aborted by the database servers as a
result of deadlock avoidance, or it can be caused by
communication failure between the transactional ob-
jects and the database servers, or failure of the primary
out-bound gateway failure itself. In such cases, the

transaction is automatically retried, without the client’s
involvement. This ensures exactly-once invocations
from the clients to the replicated transactional objects.
Care must be taken to guarantee consistency of the
state of the transactional objects. To the best of our
knowledge, other exactly-once approaches work only
with stateless servers.

In the unified infrastructure, the application servers are
replicated (Database replication, although an interesting
topic, is beyond the scope of this paper). Unreplicated
clients access the replicated servers through the in-bound
gateways. The in-bound gateways are replicated using pas-
sive replication. The out-bound gateways are used between
the replicated transactional objects and the database server
to prevent duplicate requests from escaping the fault toler-
ance domain to the database servers. The out-bound gate-
ways are implemented in the process group layer of the
Totem group communication system. The transactional pro-
cesses communicate with the gateway via local interpro-
cess communication channels, and the gateway communi-
cates with the database servers via TCP/IP. An example of a
three-tier application running with the unified infrastructure
is illustrated in Figure 1.

3.1 Augmented Fault Tolerance Mechanisms

Replication mechanisms. The replication mechanisms
monitor the creation/completion of each transaction, keep
track of the request/reply messages that belong to the trans-
action, and parse all requests to, and replies from, the
OTS server. For each transaction, they maintain a trans-
action identifier (XID). For the OTS management objects
and application-controlled management objects, they main-
tain a list of object keys together with their object group
identifiers. The mechanisms recognize invocations that are
part of a transaction by comparing the object key in a re-
quest message with the object keys in the object key list. To
indicate the start or stop of a transaction, the infrastructure
multicasts special messages to the transactional objects, and
updates the transaction tables accordingly.

Logging/recovery mechanisms. An object can be check-
pointed only when it is transactional quiescent. The user
can specify the checkpoint frequency as guidance for the
logging mechanisms; however, the mechanisms might not
be able to checkpoint the object at the exact specified fre-
quency because they must wait for, or force, a transac-
tional quiescent state. Forcing a transactional quiescent
state means queuing requests that do not belong to the trans-
actions in which the replica is currently involved, until all
current transactions have completed. Again, this requires
the association of user messages with ongoing transactions.



Client Application Server

Database

In-bound
Gateway

AccountManager

Account B

Account A

Stores Records
for Account A

Stores Records
for Account B

OTS Server

Out-bound
Gateway

Primary

Backup

Backup

Primary

Backup

Backup

Figure 1. An example of a three-tier application running on top of the unified infrastructure.

All incoming requests and replies for a transactional object
following a checkpoint are logged. The logged messages
taken before a checkpoint are garbage collected after a new
checkpoint is taken.

Checkpointing is performed periodically for all repli-
cation styles (active, semi-active and passive replication
styles). For active and semi-active replication, although the
checkpoint operation can be delayed until a replica is re-
covered, it is not desirable because it can result in excessive
recovery time due to the need for transactional quiescence.
Waiting for transactional quiescence blocks the processing
of invocations of new transactions for an indefinite period of
time that depends on the length of the ongoing transaction.
By periodically checkpointing the replica’s state, the recov-
ery time can be much less. After the mechanisms transfer
the state to the recovering replica, they enable delivery of
new invocations to the existing replicas immediately and re-
play the log at the recovering object while they queue new
invocations.

On starting a new replica, or restarting a failed replica,
the mechanisms at the new or restarting replica multicast a
Recovery Start message. On receiving the Recovery Start
message, the mechanisms hosting the existing replicas in-
sert the Recovery Start message into the replicas’ logs and
later queue incoming messages in the log. When the mecha-
nisms have delivered all of the incoming messages ahead of
the Recovery Start message and the existing replicas are op-
erational quiescent, the mechanisms supporting those repli-
cas multicast the consolidated log to the new or recovering
replica and start delivering queued messages.

The mechanisms that host the new or recovering replica
start queuing messages after the Recovery Start message.
When they receive the consolidated log from the existing
replicas, they extract the checkpoint (if any) and messages

from the consolidated log and insert them in the same or-
der into the message queue before the Recovery Start mes-
sage. (If the recovering replica is stateless (e.g., the OTS
server), there might be no checkpoint in the logs.) If a
checkpoint is present in the log, the mechanisms that host
the new or recovering replica fabricate a set state message,
based on the checkpoint, and deliver it to the new or re-
covering replica. If the recovering replica assumes the role
of a backup replica, no further messages from the message
queue are delivered during recovery.

If the new or recovering replica assumes the role of pri-
mary replica, the mechanisms deliver all messages in the
log to the replica. They suppress outgoing messages before
the Recovery Start message. If an outgoing message is a
request, the reply might be present in the log. If so, the
mechanisms deliver the reply to the recovering replica after
they suppress the corresponding request.

If an existing (not new and not recovering) backup
replica assumes the role of primary replica, the steps are
similar but with a few subtle differences. Firstly, the log is
already present at the backup replica and the backup replica
already has its state initialized to the last checkpoint of the
primary. Secondly, the primary replica might not have han-
dled the last incoming request. Therefore, all outgoing mes-
sages from the new primary replica, after the last incoming
request is delivered, must be multicast to their destinations.
If some of the outgoing messages are duplicates, the infras-
tructure suppresses them at the destinations.

3.2 Optimization of the 2PC Protocol

To simplify the discussion, we assume that all re-
quests/replies are suppressed at the source of the message.



FT Header GID/ObjKey List GIOP Request Msg

GID1 GID3 GID4GID2ObjKey1 ObjKey3 ObjKey4ObjKey2

Transaction
Coordinator

For a transaction with four registered Resource objects
(represented by R1 to R4), there are 8 messages for each phase

Transaction
Coordinator

ORB FT

Transaction
Coordinator

(a) (b)

Multicast message to R1 and R4

Replies collected are stored here

(ii) All subsequent requests in the same phase are
suppressed and the corresponding reply is returned

(i) The first request in each phase is captured
and multicast to the registered Resource object
with piggybacked information

(1)

(1)

(1)

(3)

(1)

(4)

(3)

(5)

(1)

(6)

(4)

(7)

(1)

(8)

(5)

(2)

(2)

R1

R1

R2

R2

R3

R3

R4

R4

STOP

Figure 2. Steps of the 2PC protocol for � � � participants (a) without the optimization, and (b) with
the optimization. Only one phase of the 2PC protocol is shown in the figure.

In a replicated system, each two-way interaction between
two replicated objects is converted into (at least) two multi-
casts, one for the request and the other for the reply. In the
2PC protocol, assuming that the number of registered Re-
source objects (transaction participants) is �, the total num-
ber of multicasts is reduced from �� to �� � �, by aggre-
gating the multiple request messages from the transaction
coordinator to the transaction participants. Figure 2 shows
the steps needed to achieve the optimization of the 2PC pro-
tocol for � � � participants. The non-optimized case is also
shown. As can be seen, the total number of messages drops
from 16 to 10 with the optimization.

As shown in Figure 2, Step (i), the infrastructure piggy-
backs the list of object group IDs and object keys for all of
the Resource objects onto the first request message for each
phase of the 2PC protocol, and multicasts the message to all
of the Resource objects in the transaction. The infrastruc-
ture decides if the message should be delivered to a replica
based on the object group ID. Before delivering the message
to a replica, the infrastructure replaces the object key that
is contained in the request message with the object group
ID that corresponds to the object group ID of the receiving
group. The infrastructure supporting the transaction coor-

dinator collects responses from the Resource objects and
delivers the reply corresponding to the first and subsequent
requests from the transaction coordinator. All requests in
each phase except the first are suppressed, as shown in Step
(ii) in Figure 2.

3.3 Distributed Out-Bound Gateways and
Automatic Transaction Retry

Rather than building a single set of replicated out-bound
gateways between the replicated application servers and the
database system, we designed and implemented distributed
out-bound gateways. Unlike the traditional design in which
a primary gateway failure can result in the abort and retry of
all of the ongoing transactions in the replicated system, the
failure of one of the distributed gateways aborts only those
transactions that go through that particular gateway. This
feature significantly increases the scalability and robustness
of the infrastructure.

The distributed gateway mechanisms are built into the
Totem process group layer. A Totem instance that supports
objects that interact with the database system activates the
mechanisms when the objects start to communicate with



one or more database servers. Rather than letting the repli-
cas connect directly to the database servers, the connections
from the objects are routed to the Totem instance that runs
on the same host through local IPC. For active replication,
one of the replicas in the object group is designated as the
primary replica for the purpose of handling the interactions
between the replicas and the database server. In the case of
semi-active or passive replication, the same primary replica
is chosen. The gateway that supports the primary replica,
in turn, opens TCP/IP connections to the database servers.
The secondary gateways do not establish the connections
and do not forward the messages to the database server. The
primary gateway forwards the messages received from the
database servers back to the primary replica, and multicasts
the replies to the other object group members.

When the primary gateway fails, one of the remaining
replicas is promoted to be the primary. The fault tolerance
mechanisms that support the remaining replicas checks the
outstanding transaction list and the status of each transac-
tion on that list.

If a transaction is not yet prepared, the mechanisms shut
down the connection with the replica to induce the replica to
rollback the transaction because the database server might
have aborted the transaction when it detected that the con-
nection was down. In the meantime, the fault tolerance
mechanisms broadcast a special message to the transaction
originator to request a retry of the aborted transaction. Be-
fore retrying the aborted transaction, the states of all trans-
action objects that are involved in the transaction are re-
set. This reset is achieved by restoring the last checkpoint
at each replica, and replaying the logged messages, up to,
but not including, the message that took the object into the
transaction. The logged messages within the aborted trans-
action are discarded. Finally, the message that initiated the
transaction is replayed at the transaction initiator.

On the other hand, if a transaction is already prepared,
the connections for the transaction remain open and the new
primary gateway reestablishes TCP/IP connections to the
database servers. The fault tolerance mechanisms (collo-
cated with the transactional object and the transaction co-
ordinator) then reissue the logged request for the second-
phase of the 2PC protocol.

4 Performance Measurements

We have developed a prototype of the infrastructure that
unifies replication and transaction processing, based on the
ORBacus OTS implementation [15] from Object Oriented
Concepts, Inc., and our own FT CORBA implementation
based on ORBacus’s pluggable protocols framework. We
used the Oracle 8i Database Management System (DBMS)
as the XA resource manager. Our experiments were carried
out on six Pentium III PCs over a 100 Mbit/sec local-area

0

5

10

15

20

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t i

n 
tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d

Number of Clients

with replication
without replication

Figure 3. Throughput of the application
server, in terms of number of transactions per
second, with and without replication.

network. Each PC is equipped with a single 1GHz CPU
and 256 MBbytes of RAM, and runs the Mandrake Linux
7.2 operating system.

The experimental three-tier application setup is shown
in Figure 1. The clients invoke the replicated server to do a
simple bank balance transfer operation. The server then up-
dates the associated tables in the Oracle database manage-
ment system. The servers are replicated using semi-active
replication, because semi-active replication achieves a good
balance between the runtime overhead in the fault-free case
and the recovery time when a fault occurs.

All server-side processes, including the OTS server, are
three-way semi-actively replicated on four of the six PCs.
Up to eight unreplicated clients are distributed as evenly
as possible on the two remaining PCs. For each run, each
client starts and commits a total of 1,000 transactions, one
after the other without any delay.

The overall throughput in terms of the number of trans-
actions per second is reduced by only 10% to 20% over the
unreplicated case, as shown in Figure 3. Considering the in-
creased availability and reliability provided by replication,
this overhead is acceptable. The resource utilization of the
unified infrastructure is moderate. The unified infrastruc-
ture takes about 10-20% of the CPU time on each node, and
consumes about 4 Mbits/sec network bandwidth for the re-
liable totally-ordered multicast protocol.

In addition to the throughput, we also measured the la-
tency of the following two activities: (1) the start of a trans-
action and the business logic operations (i.e., bank balance
transfer), and (2) the two-phase commit (i.e., the termina-
tion of the distributed transaction). The mean latencies of
each of the two activities, measured at the clients, for dif-
ferent throughputs, compared to the unreplicated case, are
shown in Figure 4.



0

20

40

60

80

100

120

4 6 8 10 12 14 16 18

La
te

nc
y 

fo
r 

T
ra

ns
ac

tio
n 

S
ta

rt
 a

nd
 L

og
ic

 O
pe

ra
tio

ns
 in

 m
ili

se
co

nd
s

Throughput in transactions per second

(a)

with replication
without replication

0

50

100

150

200

250

300

350

400

450

500

4 6 8 10 12 14 16 18

La
te

nc
y 

fo
r 

T
w

o-
P

ha
se

 C
om

m
it 

in
 m

ili
se

co
nd

s

Throughput in transactions per second

(b)

with replication
without replication

Figure 4. Mean latency for (a) transaction startup and business logic operations, and (b) two-phase
commit, for different throughputs, with respect to the unreplicated case.

Figure 4 (a) shows the latency for the first activity, the
communication and processing overhead incurred by the
unified infrastructure. As the throughput increases, the
overhead increases from about 50% to more than 100%.
Detailed measurements the cost of the token-based fault tol-
erance infrastructure can be found in [20].

Figure 4 (b) shows the latency for the second activity,
i.e., two-phase commit. The infrastructure overhead be-
comes relatively small in terms of a percentage of the non-
replicated case because the 2PC protocol involves expen-
sive (in terms of latency) disk IO operations. The standard
deviation of the measured latencies for this activity, both
with and without replication, is quite large, about 10% of
the mean latency, probably because of the disk IO.

5 Related Work

Several researchers [2, 3, 6, 10] have investigated ob-
ject replication and fault tolerance for CORBA prior to
the adoption of the Fault Tolerance CORBA standard [13].
Since then, other researchers [8, 11, 12] have developed
partial or complete implementations of the Fault Tolerant
CORBA standard that the middle-tier application servers
might use. To the best of our knowledge, none of the other
researchers has addressed the unification of fault tolerance
and transactions in a three-tier architecture.

Little and Shrivastava [7] have proposed a high availabil-
ity solution for CORBA applications written in Java. Their
system replicates the application objects to achieve forward
progress and provides consistency by means of transac-
tions. They employ a transactional naming service to man-
age replication and persistent state. Their implementation
is based on the CORBA Object Transaction Service but not
on the Fault Tolerant CORBA standard.

Frolund and Guerraoui [4] have pointed out the deficien-
cies of both the Object Transaction Service and Fault Tol-
erant CORBA as high availability and fault tolerance so-
lutions. They have recognized the difficulties of combin-
ing the two services and have proposed a set of propri-
etary protocols as a solution [5]. Their protocols (called e-
transactions) are based on passive replication and guarantee
exactly once semantics for transactions. In e-transactions a
client retries a request until that request is eventually com-
mitted. E-transactions include a 2PC protocol equivalent
to distributed transaction completion, but with no-blocking
guarantees rendered by passive replication of the transac-
tion coordinator. Commercial clustering techniques are
used to replicate the database servers.

Much work has been done on improving the reliability
of database systems, the last tier in the three-tier architec-
ture. Vaysburd [17] has given an excellent survey of com-
mercially available packages that provide fault tolerance for
the database tier, with respect to such requirements as per-
sistence, data consistency and high availability of service.
Several researchers [1, 16] have investigated the use of
group communication in combination with transactions for
database replication. Database replication is an interesting
and important topic, but it is not the focus of this paper.

6 Conclusion

The infrastructure described in this paper transparently
unifies replication and transaction processing in three-tier
architectures by replicating the application servers and the
transaction coordinators. With replication and automatic
transaction retry, the infrastructure guarantees non-blocking
of distributed transaction completion and provides roll-
forward semantics for business operations as perceived by



the clients. The infrastructure makes it possible to use
the CORBA Object Transaction Service together with Fault
Tolerant CORBA to achieve higher availability and reliabil-
ity for enterprise applications.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi and I. Stanoi,
“Exploiting atomic broadcast in replicated databases,
Proceedings of the Third International Euro-Par Con-
ference, Passau, Germany (September 1997), pp. 496-
503.

[2] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D.
E. Bakken, M. E. Berman, D. A. Karr and R.
Schantz, “AQuA: An adaptive architecture that pro-
vides dependable distributed objects,” Proceedings of
the IEEE 17th Symposium on Reliable Distributed
Systems, West Lafayette, IN (October 1998), pp. 245-
253.

[3] P. Felber, R. Guerraoui and A. Schiper, “The imple-
mentation of a CORBA object group service,” Theory
and Practice of Object Systems, vol. 4, no. 2 (1998),
pp. 93-105.

[4] S. Frolund and R. Guerraoui, “CORBA fault-
tolerance: Why it does not add up,” Proceedings of the
IEEE 7th Workshop on Future Trends of Distributed
Systems, Cape Town, South Africa (December 1999),
pp. 229-234.

[5] S. Frolund and R. Guerraoui, “Implementing e-
transactions with asynchronous replication,” Proceed-
ings of the IEEE 2000 International Conference on
Dependable Systems and Networks, New York, NY
(June 2000), pp. 449-458.

[6] S. Landis and S. Maffeis, “Building reliable dis-
tributed systems with CORBA,” Theory and Practice
of Object Systems, vol. 3, no. 1 (1997), pp. 31-43.

[7] M. C. Little and S. K. Shrivastava, “Implement-
ing high availability CORBA applications with Java,”
Proceedings of the IEEE Workshop on Internet Appli-
cations, San Jose, CA (July 1999), pp. 112-119.

[8] C. Marchetti, M. Mecella, A. Virgillito and R. Bal-
doni, “An interoperable replication logic for CORBA
systems,” Proceedings of the International Symposium
on Distributed Objects and Applications, Antwerp,
Belgium (September 2000), pp. 7-16.

[9] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R.
K. Budhia and C. A. Lingley-Papadopoulos, “Totem:
A fault-tolerant multicast group communication sys-
tem,” Communications of the ACM, vol. 39, no. 4
(April 1996), pp. 54-63.

[10] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
“Consistent object replication in the Eternal system,”
Theory and Practice of Object Systems, vol. 4, no. 2
(1998), pp. 81-92.

[11] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith,
“State synchronization and recovery for strongly con-
sistent replicated CORBA objects,” Proceedings of the
IEEE 2001 International Conference on Dependable
Systems and Networks, Goteberg, Sweden (June/July
2001), pp. 261-270.

[12] B. Natarajan, A. Gokhale, S. Yajnik and D. C.
Schmidt, “DOORS: Towards high-performance fault-
tolerant CORBA,” Proceedings of the International
Symposium on Distributed Objects and Applications,
Antwerp, Belgium (September 2000), pp. 39-48.

[13] Object Management Group. Fault Tolerant CORBA
(final adopted specification). OMG Technical Com-
mittee Document (ptc/2000-04-04) (April 2000).

[14] Object Management Group. Transaction service spec-
ification v1.2 (final draft). OMG Technical Committee
Document (ptc/2000-11-07) (January 2000).

[15] Object Oriented Concepts, Inc. ORBacus OTS, 1.0
beta 2 edition, 2000.

[16] F. Pedone, R. Guerraoui and A. Schiper, “Exploiting
atomic broadcast in replicated databases,” Proceed-
ings of the 4th International Euro-Par Conference,
Lecture Notes in Computer Science 1470 (September
1998), pp. 514-520.

[17] A. Vaysburd, “Fault tolerance in three-tier applica-
tions: Focusing on the database tier,” Proceedings
of the IEEE 18th Symposium on Reliable Distributed
Systems, Lausanne, Switzerland (October 1999), pp.
322-327.

[18] X/Open Company Ltd. Distributed Transaction Pro-
cessing: The XA Specification. The Open Group
(February 1992).

[19] W. Zhao, L. E. Moser and P. M. Melliar-Smith, “De-
sign and implementation of a pluggable Fault Toler-
ant CORBA infrastructure,” Proceedings of the Inter-
national Parallel and Distributed Processing Sympo-
sium, Fort Lauderdale, FL (April 2002).

[20] W. Zhao, L. E. Moser and P. M. Melliar-Smith, “End-
to-end latency of a fault-tolerant CORBA system,”
Proceedings of the IEEE International Symposium on
Object-Oriented and Real-time Distributed Comput-
ing, Washington, DC (April 2002).


